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The relative viscosities of suspensions of randomly oriented rods in a Newtonian fluid 
were measured using falling-ball rheometry. The rods were monodisperse and 
sufficiently large to render colloidal and Brownian forces negligible. Steel and brass 
ball bearings were dropped along the centreline of cylindrical columns containing t,he 
suspensions. The terminal velocities of the falling balls were measured and used to 
determine the average viscosities of the suspensions. The suspensions behaved as 
Newtonian fluids in that they were characterized by a constant viscosity. They 
exhibited a linear relative viscosity-volume fraction relationship for volume fractions 
less than 0.125, and, for volume fractions between 0.125 and 0.2315, the specific 
viscosity increased with the cube of the volume fraction. The relative viscosity was 
found to be independent of falling-ball size for a ratio of falling ball to  fibre length 
greater than 0.3. It was found to be independent of the diameter of the containing 
cylindrical column for a ratio of column diameter to fibre length greater than 3.2. The 
value determined for the intrinsic viscosity is in good agreement with theoretical 
predictions for suspensions of randomly oriented rods. 

1. Introduction 
When only hydrodynamic forces are present, the macroscopic rheology of 

suspensions of rods in Newtonian fluids depends upon the volume fraction, $, the 
particle aspect ratio, a,, the rod orientations, and their distribution in space. The 
constitutive relation for a suspension of rods can be anisotropic, time dependent, and 
sensitive to the initial particle orientation. In  this paper, we restrict our attention to 
the viscosity of homogeneous isotropic suspensions. By isotropic, we mean that the 
angular distribution of the orientations of the rods is random. The suspensions are 
composed of non-Brownian, neutrally buoyant, and monodispersed rods in 
Newtonian fluids. Herein, we report the effect of volume fraction on the relative 
shear viscosity, ,ur, for a fixed aspect ratio, a, = 19.83. 

Most macrorheological studies of suspensions of rods have sought to determine the 
relative viscosity as a function of volume fraction and aspect ratio. The results of 
much of this work were recently summarized by Ganani & Powell (1985). In nearly 
all of the work reviewed in that paper, the rotary Pbclet numbers, Pe = y / D ,  (where 
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y is the shear rate and D, is the rotary Brownian diffusion coefficient), were quite 
large (Pe > los). Since the Reynolds numbers based on the particles were small and 
colloidal effects were absent, the macroscopic shear stress should have been linear in 
the suspending-fluid viscosity and shear rate. However, much of the available data 
from several laboratories were observed to show nonlinear constitutive behaviour, 
such as shear thinning, when a;* < q5 < 2~;’. Consequently, it was not possible to 
define a unique relationship between relative viscosity, volume fraction, and aspect 
ratio. 

Several of the factors that could account for such nonlinear behaviour include fibre 
flexibility, flow-induced migration, and fibre breakage. These findings led Ganani & 
Powell (1986) to conduct a study which sought to  minimize these effects. They used 
suspensions of nearly monodispersed glass rods, (a ,  = 25, Pe + 1, Re < 1 )  in a 
Newtonian fluid a t  volume fractions up to 0.08. Using rotational rheometry, the 
steady shear stress was found to be linear with shear rate. Hence, under carefully 
controlled conditions, they showed that, potentially, a unique pr- q5-c~~ surface could 
be defined. They also observed a shear-stress transient upon inception of shearing. 
The shear stress did not immediately rise to the steady-state value; it rose to a 
maximum value, then decayed to the steady state. This transient behaviour was 
qualitatively different from that found in dilute suspensions. The decaying periodic 
stresses in a dilute suspension observed by Ivanov, Van de Ven & Mason (1982) 
correspond directly witlithe Jeffrey orbits executed by individual rods (Jeffrey 1922 ; 
Trevelyan & Mason 1951 ; Okagawa, Cox & Mason 1973). 

I n  our current study, we use falling-ball rheometry to measure the relative shear 
viscosity of randomly oriented, homogeneous suspensions of rods in a Newtonian 
fluid. Experimentalists have thus far been unable to measure the viscosity accurately 
while maintaining a randomly oriented configuration of rods. Viscometric and 
extensional flows, the usual tools of rheologists, deform the microstructure of the 
suspension from its initial configuration. For suspensions of non-Brownian rods in 
Newtonian fluids these standard techniques induce an alignment of the rods. In  
contrast, a ball falling through the suspension only slightly perturbs the original 
microstructure of the suspension. Falling-ball rheometry has been shown to provide 
an accurate, reproducible method for measuring the viscosity of suspensions of 
spheres (Mondy, Graham & Jensen 1 9 8 6 ~ )  and, in a pilot study, of randomly oriented 
rods (Graham et al. 1987). With this technique the initial orientational distribution 
of the rods can be controlled and fibre-aligning effects of the flow field are minimal. 
Therefore, it provides a unique tool for measuring the viscosity of suspensions of 
randomly oriented rods. 

Viscosity measurement using falling-ball rheometry is based on Stokes’s law for a 
sphere falling under the influence of gravity in an infinite, inertialess, 
Newtonian fluid (Batchelor 1967). If, as in our experiments, the fluid is bounded by 
a cylindrical container, Stokes’s law must be modified to account for the additional 
drag caused by the container boundaries. This effect wag analysed by Fax& 
(1923) and extended to  higher order by Bohlin (1960). They showed that, in the 
limit of zero Reynolds number (based on the falling ball), the shear viscosity, 
p, is given by 

p = [ 1 - 2.104 ($) + 2.09 ($)3 - 0.95 ($ + 0 [d8(4.g,p)g]. ( 1) 

Here, d is the diameter of the falling ball, D is the diameter of the cylinder containing 
the fluid, ps and p are the densities of the falling ball and liquid, respectively, g is the 
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acceleration due to gravity, and v is the terminal velocity of the ball along the 
centreline of the column. Equation (1) implies that for falling-ball experiments 
conducted using two Newtonian liquids of identical densities with identical balls and 
cylinders, the viscosity of one liquid relative to the other is 

Pr = PZlP1 = %I%. (2) 

In a previous study using falling-ball rheometry (Mondy et al. 1986a), it was found 
that a suspension of spheres behaved, on the average, as an equivalent single-phase 
fluid characterized by a shear viscosity. Wall effects in these suspensions were 
described by FaxBn’s formula (1). Hence, the pr in (2) was the usual relative viscosity 
with the subscripts 1 and 2 referring, respectively, to the suspending fluid and the 
suspension. We shall show that the results for suspensions of rods are consistent with 
this assumption. Because suspensions are two-phase systems, their viscosities have 
meaning only in an averaged sense. Since the velocity of a falling ball varies as it 
interacts with individual rods, it is the velocity averaged over a large number of rod/ 
ball interactions that is used to calculate an average relative viscosity of the 
suspension. 

In the following section, we describe the experimental technique. Section 3 
describes results for the relative viscosity as a function of the volume fraction, the 
dimensionless ball diameter d / B ,  and the dimensionless column diameter D / L .  
Following this, we describe the relationship of our experiments to earlier theoretical 
and experimental results. 

2. Experimental 
Thermally controlled, cylindrical columns were filled with suspensions of rods in 

the volume fraction range 0.0025 to 0.2315. A high-speed, digitizing video system 
was used to record the trajectory of the ball. The terminal velocities of steel and brass 
balls were measured for various ball sizes and column diameters ; these were used to 
determine the relative viscosities of the suspensions. 

2.1. Suspensions 
The rods were individually cut to a length, L,  of 3.165 cm from a 0.1588 cm diameter 
(nominal) polymethyl methacrylate rod (Thermo Plastics Inc., Cleveland, OH). The 
rods were cylindrical and had flat, blunt ends (figure 1). The aspect ratios of 100 rods 
were measured and the average was 19.83. Because the standard deviation of the 
aspect ratio was 0.73, the rods were considered to be essentially monodisperse. We 
note that most of the variations in aspect ratio resulted from variations in the di- 
ameter of the rods (average diameter = 0.1596 cm, standard deviation = 0.0059 cm, 
average length = 3.165 cm, standard deviation = 0.008 cm). 

The elastic modulus of polymethyl methacrylate is 2.4-3.4 x loB N/m2 (Weast 
1986). The effect of fibre bending can be estimated by substituting this value into 
Forgacs & Mason’s (1959) prediction for the onset of fibre bending in shear flow. 
Their criterion indicates that fibre bending should occur when the shear rate is 
greater than about 1250 s-l. The characteristic shear rate in falling-ball experiments 
is estimated by 2v/d (Gottlieb 1979) ; for our experiments, it is in the range 0.05 < 
2v/d < 15 s-l. Hence, bending is negligible and these rods can be considered rigid. 
The rotary Brownian diffusion coefficient of the rods is 3.0 x lo-’’ s-l (Brenner 1974), 
and, for the shear rates in these experiments, the rotary PBclet number is greater 
than 1.6 x 1015. Therefore, the effect of Brownian forces is clearly negligible. 

0 FLH 202 
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FIGURE 1. Photograph of two polymet,hyl methacrylate rods. R'ods were individually cut to a 
length of 3.165 cm and had a nominal diameter of 0.1588 em. The average aspect ratio based upon 
a sample of 100 rods was 19.83 k0.73. 

Short rayon fibres (AB Bernhard Steffert, Sweden) were used a t  a volume fraction 
of 0.05. They were used a t  this one volume fraction to examine the effect of d / L  when 
d/L 9 1 and D / L  9 1 and to compare the measured viscosity with that found for the 
suspension of polymethyl methacrylate rods at, the same volume fraction. Electron 
micrographs of these fibres are shown in figure 2. From these micrographs we 
measured 23 rods and found an average length of 370 pm, an average diameter of 
20 pm, and an average aspect ratio of 18.5, with a standard deviation of 2.3. The 
length and diameter of some of these fibres could only be estimated because they 
were twisted and bent and their diameters were not constant. The fibres were more 
polydispersed than the polymethyl methacrylate rods and they had irregular ends. 
The rotary P6clet number for the fibres was greater than 1.9 x lo9, so the effect of 
Brownian forces was negligible. The criterion of Forgacs & Mason (1959) indicates 
that the onset of bending in these fibres occurs a t  a shear rate of about 500 sP1, which 
is at least an order of magnitude higher than the characteristic shear rate in these 
experiments. These fibres were not used for most of the experiments because they 
were not as regular in shape as the polymethyl methacrylate rods and they were more 
polydisperse. Hence, they would have added an extra error to the measurements 
which could not be quantified. 

The fluid was a mixture of polyalkylene glycol (UCON-HB-9500 Union Carbide 
Corporation, Danbury, CT), 1,1,2,2-tetrabromoethane (Eastman Kodak Company, 
Rochester, NY), and Tinuvin 328 (Ciba-Geigy, Ashley, NY). The quantity of 
tetrabromoethane in the mixture was adjusted so that the density of the fluid 
mixture matched that of the rods a t  20.OO0C, 1.1818g/cm3 for the polymethyl 
methacrylate rods, and 1.476 g/cm3 for the rayon fibres. A small quantity ( G 0 . 2  
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FIGURE 2.  Electron micrographs of rayon fibres. The fibres were obtained commercially. The 
average aspect ratio based upon a sample of 23 rods was 18.7f2.3. 

Material Property 

Polymethyl Density 
methacrylate Length 

Diameter 
Aspect ratio 
Rotary Brownian 

Elastic modulus 

Rayon Density 
Length 
Diameter 
Aspect ratio 
Rotary Brownian 

Elastic modulus 

diffusion coefficient 

diffusion coefficient 

Notation Value (units) Standard deviation 
p 1.1818 (g/cm3) - 
L 3.165 (cm) 0.008 
d, 0.1596 (cm) 0.0059 
a, 19.83 0.73 
D, 3.0 x 10-17 (s-l) - 

__ 2.4-3.4 x lo9 (N/m2)t - 

L 370 (pm) 20 
d, 20 (pm) 2 

p 1.476 (g/cm3) - 

a, 18.7 2.3 
D, 2.6 x (s-l) - 

- 6 x 10' (N/m2)f 

t From Weast (1986). 
$ From Kroschwitz (1987). 

TABLE 1. Properties of the rods 
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Density (g/cm*) Viscosity (Pa Y )  

Suspended rods (20.00 "C) (20.00 "C) 

Polymethyl 

Rayon 
methacrylate 

1.1818 11.95 

1.476 9.43 

TABLE 2. Properties of the fluids 

wt%) of Tinuvin, an antioxidant, was added to  the mixture to prevent the 
breakdown and discoloration of the tetrabromoethane by ultraviolet light. 

The viscosity of both fluids was measured by falling-ball rheometry. The fluid used 
for the polymethyl methacrylate rods had a viscosity of 11.95 Pa s and that for the 
rayon fibres had a viscosity of 9.43 Pa s. The viscosity of the fluid used to suspend 
the polymethyl methacrylate rods was also measured on a Viscoelastic Analyzer 
(Sangamo-Schlumberger, Bognor Regis, UK) (Lam, Rakesh & Powell 1985). The 
measurements agreed with the results of the falling-ball experiments and the fluid 
was found to be Newtonian over the range of shear rates characteristic of these 
experiments. The fluid used to suspend the rayon fibres was measured on a 
Rheometrics RDS Mechanical Spectrometer (Rheometrics, Piscataway, NJ) and 
found to have a dynamic viscosity independent of the frequencies tested (10-l- 

Before the suspensions were made, the rods were cleaned with soap and water, 
rinsed with deionized water, and dried. The suspensions were made by weighing out 
the required quantities of fluid and rods on a Mettler PC8000 balance. The balance 
was accurate to + O . l  g, but was limited to a weight of 8 kg. The suspensions 
required 16-24 kg of fluid, resulting in an inaccuracy of the added weights of each 
suspension less than or equal to k 0 . 3  g. The uncertainty in the volume fraction was 
determined to be less than 5 x (less than 2 % a t  the lowest volume fraction) and 
is contained within the symbols representing the data points on all figures in this 
paper. A summary of the properties of the rods and fluids used in these experiments 
is given in tables 1 and 2. 

2.2. Apparatus 
The suspensions were contained in cylindrical glass columns 50.1 cm high and 15.3, 
10~2, and 5.1 ern in diameter. The tops of the columns had removable covers with 
guide tubes at  the centre to  ensure that the falling ball was dropped along the 
centreline. The guide tubes were fabricated from Teflon rods and had bore diameters 
slightly greater than the falling balls. 

There was a thin slot in the cover from the guide tube to the wall of the column 
for a stirrer. The stirrer, which was used to randomly orient the suspended particles, 
was a long brass rod with a handle on the top and eight short prongs on the bottom. 
We mixed the suspension thoroughly before each ball was dropped by briskly raising, 
lowering, and twisting the stirrer. A few coloured test rods were placed in one 
suspension and their orientations were observed after stirring. There was no 
correlation between the orientations or positions of the test rods in successive 
stirrings. Although a few rods were broken by the stirring, this did not affect the 
measured value of the viscosity within the accuracy of our experiments. Care was 
taken when stirring to avoid the introduction of air bubbles. 

The cylindrical columns were placed in an insulated water tank controlled by a 
constant-temperature circulator (Lauda Company, Brinkman Instruments, West- 

103 s-l). 
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bury, NY). The columns were thermally equilibrated for a t  least 24 h before any 
experiments were performed. The temperature of a suspension was measured with a 
thermocouple probe to within kO.01 "C (Instrulab Inc., Dayton, OH). The 
temperature was measured a t  the beginning of an experiment and after each set of 
10 individual measurements. The probe allowed measurement of the temperature a t  
different points in the suspension to ensure thermal homogeneity. Falling-ball 
experiments were performed when the measured temperature was within fO.10 "C 
of the desired set point (20.00 "C). 

The balls used in these experiments were brass and chrome-plated steel ball 
bearings (Anti-Friction Bearing Manufacturers grade 200, Hoover Universal 
Company, Ann Arbor, MI). The steel balls were used at the beginning of the 
experimental programme because they could be recovered from the suspension with 
a magnet and the same balls could be dropped in each suspension. Brass ball bearings 
were used in later experiments because they did not oxidize as quickly in 
tetrabromoethane. The relative viscosity of the suspension of polymethyl meth- 
acrylate rods in which both types of balls were used ($ = 0.0218) showed no 
significant dependence on the type of ball. 

Prior to the experiments, the balls were placed in the water bath and thermally 
equilibrated to the temperature of the suspension. Four different nominal diameters 
were used: 0.953, 1.27, 1.59, and 1.91 cm. The actual diameter of each ball was 
measured to  f0.0003 em, and t,k weight of each was measured to f0.0002 g. These 
values were used with (1) to calculate the viscosity. The characteristic Reynolds 
number, Re = pwd/,u, was in the creeping-flow regime (<0.1)  (Batchelor 1967) for all 
of the ball sizes and suspension concentrations except the largest ball size in the two 
most dilute suspcnsions. For these balls, the Reynolds number was less than 0.14, 
but, to within the uncertainty of the measurements, no change was found in the 
relative viscosity. 

2.3. Measurement techniques 
The trajectory of each ball was recorded on a video tape. The velocity was measured 
in the middle third of the column, a t  least one column diameter from the top and 
bottom, to ensure that end effects would be negligible (Tanner 1961 ; Sonshine, Cox 
& Brenner 1966a, b) .  Positions and times were recorded at the top and bottom of the 
viewing screen, and an average velocity was determined for the falling ball. The 
average velocity was also determined over the top and the bottom halves of the 
screen. Throughout the experiments, the averages of the three velocities for each ball 
size were statistically indistinguishable a t  the 95 % confidence level, indicating that 
tetminal velocity had been reached. 

At low concentrations, the balls were filmed optically with a high-speed digitized 
video system, the SP2000 Motion Analysis System (Spin Physics Division of 
Eastman Kodak, Rochester, NY). This was done to:  (i) minimize systematic errors 
in spatial and temporal resolution ; (ii) allow the same data analysis procedures to be 
used in both transparent and opaque suspensions; and, (iii) archive data for future 
review. In  the last case, data from several experiments were analysed by more than 
one experimenter to ascertain whether any biases were being introduced. With this 
system, any frame could be examined and data for position and time could be taken. 
The accuracy in position and time was better than f0.06 ern and k0.002 s, 
respectively. The uncertainty in position represents a distance of one pixel. The 
length of a pixel was determined by hanging a plumb bob of known dimensions in 
the suspensions and measuring its length in pixels. 

The frame rate was chosen so that the ball moved less than half a pixel from one 
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frame to the next. A rate of 200 frames per second was sufficient in most experiments, 
but a rate of 500 frames per second was needed for the larger balls a t  the low 
concentrations (9 = 0.0025, 0.004, 0.0218). The column was illuminated by two 
strobe lights. During long experiments (greater than 30 s) the lights were turned on 
only when the ball was a t  the top, in the middle, and a t  the bottom of the screen. In 
this way, the position and time of the ball was recorded, and, a t  the same time, the 
heating due to the lights was minimized. 

Although the polymethyl methacrylate rods were transparent, they had a different 
refractive index from that of the fluid. At high concentrations, 9 2 0.15, the 
refraction of light at the surfaces of the rods made optical filming of the falling balls 
impossible. For these opaque suspensions, the ball was followed by real-time 
radiography (Mondy et al. 19863). X-Rays were passed through the suspension and 
into an image intensifier. The output of the image intensifier was recorded by the 
same high-speed video system. Subsequent data analysis was the same as that used 
at  low concentrations. 

3. Results 
The measured velocities were used with (1) and (2) to calculate the relative 

viscosities of the suspensions. The relative viscosities calculated from individual balls 
of the same nominal diameter could differ by over 100% a t  the highest volume 
fractions. This variation in viscosity resulted from variations in the angular and 
spatial distributions of the rods over the measuring section of the column from one 
experiment to the next. With the polymethyl methacrylate rods, many experiments 
were needed to reach a reproducible average viscosity. When a sufficient number of 
balls was dropped a reproducible average value was always obtained. 

The actual numbers of balls used to determine the average viscosity for each ball 
diameter and volume fraction are given in table 3. Generally, at least ten balls of each 
diameter were used. I n  most studies, we dropped balls in sets of five. After each set, 
the average relative viscosity was calculated. When the values of p, were 
indistinguishable based on a Student t-distribution (Walpole & Myers 1972), the 
average of the combined sets was taken to be the viscosity of the suspension. When 
p r  did differ significantly, additional balls were dropped until pr  reached a constant 
average value. 

The purpose of this work was to determine the effect of volume fraction on the 
relative viscosity when the suspension behaved as an unbounded continuum, i.e. 
d /D 6 1,  d / L  & 1 ,  D / L  & 1. This required first measuring the effect of these three 
dimensionless parameters. 

The effect of d / D  was established by varying both column and ball diameters. 
These results are shown in figure 3 for three volume fractions which are representative 
of the concentrations studied. The solid lines indicate the average viscosity value at 
each concentration. There is only a very small degree of variation in viscosity with 
dimensionless ball size. Although a dependence cannot be supported statistically, the 
variation may result from larger scale structures or hindered rotations of the rods. 
I n  calculating these viscosities (1) and (2) have been applied, i.e. the suspensions were 
assumed to behave as Newtonian liquids. The results shown in figure 3 are consistent 
with this assumption. The F a x h  (1923) formula ( 1 )  correctly accounts for the 
effect of container boundaries and yields the same value of viscosity for all ball sizes 
used in these experiments. 

The error bars in figure 3 represent the 95 % confidence limits in the data based on 
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d 
- = 0.065 Total average 

d d - _  - 0.13 - = 0.109 - = 0.087 
D D D D 

0.0025 1.078f0.039 1.052f0.051 1.085 f0.87 1.076f0.023 1.075+0.023 

0.004 1.101 f 0.025 1.117 k 0.045 1.069 f 0.021 1.065 k0.020 1.083 +0.013 

0.0218 1.473f0.076 1.565f0.078 l.620fO.llS 1.499+0.118 1.499f0.043 

Polymethyl 2.358f0.319 2.345k0.369 2.331 k0.232 2.427k0.172 2.374+0.111 

c 
w31 
[ 1.251 (6) (5) (8) (10) (29) 

[2.00] (16) (10) (10) (26) (62) 

[10.9] (24) (17) (20) (26) (87) 

f z l a t e  ( 5 )  (14) (10) (18) (47) 

Rayon fibres - 1.957f0.083 2.004+0.056 2.029f0.036 2.004+0.026 
[22.3] (10) (15) (21) (45) 

[62.6] (20) (10) (10) (20) (60) 

[75.2] f 10) (26) 124) (20) (80) 

[87.7] (20) (15) (29) (20) (84) 

P161 (24) (24) (25) (18) (91) 

- 

0.125 4.920k0.676 4.685f0.650 4.603f0.921 4.675k0.763 4.763k0.253 

0.15 8.60f2.21 7.13kl.22 8.50k0.949 8.68f1.32 8.15f0.61 

0.175 10.58f2.66 9.03f 1.48 12.11f 1.84 9.93f 1.69 10.66f0.96 

0.2315 24.1 f 6.3 26.9k6.4 28.3k6.9 28.3f8.8 26.7 f 3.3 

TABLE 3. Relative viscosity values and uncertainties. The numbers in parentheses are the numbers 
of balls in the average relative viscosity. Except for one suspensian made using rayon fibres 
(9 = 0.05), all suspensions were made using polymethyl methacrylate rods. 

6 I " " I " "  

4 .H-f+++ 
1 

0.05 0.10 0.15 0.20 
dlD 

FIGURE 3. Relative viscosity versus dimensionless ball size: $ = 0.0218, D = 15.3 ern (A); $ = 
0.0218, D = 10.2 cm (0); q5 = 0.05, D = 15.3 cm (4); q5 = 0.125, D = 15.3 cm (u). The lines 
through the data points mark the combined average at that volume fraction. 

a Student t-distribution. This statistical uncertainty results from the variation in the 
velocities of individual balls. The uncertainties in the measurements and their 
contributions to the uncertainty in the measured relative viscosity at # = 0.0218 for 
a ball of diameter 0.953 cm are listed in table 4. The total uncertainty in physical 
measurements in this case is less than 1.0% of the relative viscosity as compared 
with the statistical uncertainty of 5.1 %. At higher volume fractions, the statistical 
uncertainty increases considerably and that due to the measuring devices becomes 
negligible relative to it. 
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Percent uncertainty in 
Measured quantity Uncertainty the measured viscosity 

1 .  Distance travelled (one pixel) 0.06 cm 0.6% 
2. Elapsed time 0.002 s <0.01% 
3. Radius of falling ball 0.0003 cm 0.2 Yo 
4. Mass of falling ball 0.0002 g <0.01 Yn 

TABLE 4. The uncertainties in physical measurements and their contributions to the uncertainty 
in the measured viscosity of a 0.953 cm ball at q5 = 0.0218. The statistical uncertainty in the 
viscosity for the 0.953 cm ball at q5 = 0.0218 is 5.1 % of the measured viscosity 

6 DIL P r  

0.0218 4.8 1.53f0.04 
0.0218 3.2 1.51 f0.04 
0.0218 1.6 1.39f0.06 
0.2315 4.8 26.7 f 3.3 
0.2315 3.2 25.8k4.4 

TABLE 5. The effect of dimensionless column diameter on the relative viscosity 

The second parameter investigated was the effect of the ratio of the column 
diameter to fibre length (DIL) on the relative viscosity. This effect should not be 
confused with the additional drag on the falling ball caused by the cylindrical walls 
of the column. This is accounted for by the use of (1). Here, we are concerned with 
the effect that the container boundaries have on the viscosity of the suspension 
caused by the restricted motion and induced alignment of the rods. As seen in table 5, 
there is no significant difference between the relative viscosity a t  D / L  of 4.8 and 
3.2 over the tested concentration region. However, the viscosity measured for D / L  
of 1.6 a t  a volume fraction of 0.0218 is lower. This leads us to conclude that D / L  of 
4.8 is sufficiently large to ensure that wall effects are negligible to within the error of 
these measurements. Wall effects become significant when 1.6 < D / L  < 3.2. This 
ratio is in agreement with the results found in shearing flows, where viscometer 
boundaries do not influence the measurements if the ratio of characteristic viscometer 
gap to fibre length is greater than 2.6-3.0 (Attanasio et al. 1972; Nawab & Mason 
1958; Blakney 1966). A somewhat lower value has been reported by Bibbo, Dinh & 
Armstrong (1985). 

Ideally, viscosity measurements should be made in the limit d / L  % 1 when, 
relative to the falling ball, the suspension approximates a continuum. Although the 
dimensionless parameter d / L  is the product of d / D  and D / L ,  it must be considered 
separately because it is not necessarily much greater than one when D / L  % 1 and 
d/D < 1. We see in figure 3 that the relative viscosity does not depend on d / L  for 
0.3 < d / L  < 0.6. Similar behaviour is observed in the case of the rayon fibres for 
which 26 < d / L  < 52 and D / L  = 400, as indicated by the constant viscosity value 
for the different ball sizes in table 3. From this we conclude that the relative viscosity 
is independent of d / L  for d / L  > 0.3, and that the values of d / L  used in these 
experiments are sufficiently large to measure the viscosity of the suspension. 
Preliminary measurements indicate that the relative viscosity decreases mono- 
tonically with d / L  below this value; this will be discussed in a subsequent paper by 
the present authors. 
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The rayon fibres have an aspect ratio that is slightly 1ess.than the polymethyl 
methacrylate fibres (18.7 compared to 19.8). Suspensions of the two different rods a t  
the same volume fraction would be expected to have comparable relative viscosities. 
The relative viscosity of the suspension of rayon fibres for q5 = 0.05 was determined 
to be 2.00. This is remarkably close to the relative viscosity measured for the 
polymethyl methacrylate rods, 2.37, considering that the rayon fibres are not regular 
cylinders with blunt ends, cf. figures 1 and 2. Also, the difference in the relative 
viscosity is consistent with that predicted by theory for the difference in aspect 
ratios : the suspension of lower-aspect-ratio rods has the lower relative viscosity 
(Brenner 1974). This decrease may result from a weak dependence of ,ur on d/L for 
d/L % 1.  In this region, the passage of the much larger falling balls may cause some 
alignment of the fibres. The comparable values of the relative viscosities further 
supports the conclusion that the d/L-values used in these experiments are sufficiently 
large to measure the viscosity of the suspension. 

The most important result of this work is shown in figure 4, namely the specific 
viscosity-volume fraction relation, where the specific viscosity is defined as 

The dashed and solid straight lines in figure 4 are the least-squares fits to the 
averaged points for the four lowest and three highest volume fractions respectively. 
Note that these points represent 585 individual experiments. The numerical values 
corresponding to the data in figure 4 are given in table 3. The intermediate point, 
occurring a t  q5 = 0.125, was not included in either fit. However, it is almost exactly 
the point where the two straight lines intersect, namely q5 = 0.117. The equations 
describing the two lines are 

psp = 28.5@.'', q5 < 0.125, (4) 

psp  = 2040q53.0', q5 > 0.125. ( 5 )  
In both cases, the correlation coefficient is greater than 0.99. It is evident from (4) 
and figure 4 that suspensions that have q5 < 0.125 are dilute, i.e. psD is linear in q5. The 
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actual ,uSp a t  4 = 0.125 deviates from linearity, (4), by only 11 YO. In Comparison, the 
specific viscosity-volume fraction relation for suspensions of spherical particles 
deviates from linearity by 36% a t  the same volume fraction (Thomas 1965). 

4. Discussion 
Based on (4), the relative viscosity varies linearly with volume fraction to within 

the error of these experiments for 4 < 0.125. Assuming that p S p  = Lu] 4, where LLL] is 
the intrinsic viscosity, and forcing our data to fall upon a straight line, we find 
b] = 27.6. While there are many theories available that predict the intrinsic 
viscosity of suspensions of spheroids, rods, etc. the particulars of our experiment as 
they relate to  these theories must be considered when making comparisons. Our 
suspensions of rods have very large P6clet numbers (Pe > 1015) and are initially 
randomly oriented. Ideally, during a measurement, the rods are only slightly 
perturbed and the average velocity of a ball is determined by an isotropic effective 
continuum. The relative shear viscosity calculated by (1) and (2) can be compared 
with theoretical results for shearing flow when the theories mandate that, a t  steady 
state, the particles are randomly oriented. 

This is the calculation performed by Simha (1940) who expected that such a theory 
would model spheroids subiect to dominant Brownian motion. This latter point 
aside, Simha’s (1940) theory can be compared with our result if, in addition, we 
calculate the equivalent aspect ratio, are, as found by Cox (1970). The equivalent 
aspect ratio of a rod is the aspect ratio of a spheroid that has the same period of 
rotation in shear flow. We find that are = 14.2, which leads to b] = 22.7 and 
compares to within 17.8 YO of our measurements. 

While the agreement with Simha is reasonable, it is possible to directly compare 
our results with Brenner’s (1974) theory for the rheology of dilute suspensions of 
blunt-ended rods. Brenner’s theory more closely describes our system, although it 
considers rods subject to strong Brownian forces. As detailed in the following 
paragraphs, the effects of processes analysed for particles subject to strong Brownian 
motion and the effects of the dominate forces in our experiments can be compared. 

The justification for this comparison rests in the work of Haber & Brenner (1984). 
Rotary Brownian motion contributes to the intrinsic viscosity in two ways : through 
the equilibrium orientation distribution of the spheroids, which depends upon the 
rotary Brownian diffusion coefficient D,; and through a direct contribution due to 
the additional energy dissipation resulting from the random velocity of the 
suspended particles. These independent effects were neglected by Simha (1940), but 
were correctly considered by Saito (1951), who obtained the same final result as 
Simha (1940). By calculating the complete expression for the bulk stress tensor for 
general triaxial ellipsoids, Haber & Brenner (1984) found that they could explain 
why the correct approach taken by Saito (1951) yielded the same results as Simha 
(1940). They found that 

where 

b3 = gw, 

The terms Qi, qi, N T ,  and *KT describe the geometry of the ellipsoid. For triaxial 
ellipsoids these parameters are tabulated in Appendix A of Haber & Brenner 
(1  984). 

Haber & Brenner (1984) show that the distribution of rod orientations is not 
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random, but rather depends linearly on the shear rate. To obtain Simha’s (1940) 
result, the distribution must be set to a constant representing an isotropic 
suspension, 1/87?, and the angular velocity of the particles must be set equal to the 
vorticity of the fluid. This results in expressions similar to (6) and (7)  but without the 
term - iNg/ ‘KT.  Alternatively, Haber & Brenner (1984) show that NT = 0 for any 
body of revolution, establishing the basis by which Simha’s (1940) theory yields 
numerically correct results for the intrinsic viscosity of spheroids in the limit of 
strong Brownian motion. 

For suspensions of blunt-ended rods, which are bodies of revolution, Brenner’s 
(1974) results for b] should be the same as the results one would obtain using 
Simha’s (1940) method. This permits a direct comparison between our results and 
Brenner’s (1974) theory. For rods having an aspect ratio of 19.83, Brenner (1974) 
predicts that b] = 29.2, 

which differs from our experimental result, 27.6, by only 5.8%. This difference, while 
small, may be attributable to the small disturbance of the random orientation of the 
rods by the falling ball. I n  figure 5 ,  we plot our data along with three dilute-regime 
predictions : blunted-ended rods (Brenner 1974), prolate ellipsoids (Simha 1940), and 
prolate ellipsoids of equivalent aspect ratio to  our rods (Cox 1970). We find excellent 
agreement with Brenner’s (1974) result for # < 0.125. At # = 0.125, the deviation of 
our data from Brenner’s prediction is small (2.4%); this is further evidence of the 
existence of the extended dilute regime. 

In figure 4, there is a sharp transition in the psp-q5 relationship a t  about # = 0.125. 
Theoretical studies on rod-like macromolecules have shown that the transition to the 
semiconcentrated region occurs a t  about the same concentration (Keep & Pecora 
1985; Magda, Davis & Tirrell 1986). In these studies, the semiconcentrated region is 
defined, following Doi and Edwards (Doi 1975; Doi & Edwards 1978a), as the region 
where the rods, assumed to be infinitely thin, are confined in their Brownian rotation 
to ‘cages’ created by the other rods. Initially, Doi & Edwards ( 1 9 7 8 ~ )  predicted the 
transition to this region to occur at nL3 = p, where n is the number density and /3 is 
a constant of order unity. Keep & Pecora (1985) have refined this work and found 
that the transition must occur above nL3 = 50. At this number density, the volume 
fraction that would be associated with rods that are not infinitely thin is # = (50x1 
4)a;?-. For our experiments (a, = 19.83) this corresponds to # = 0.10. Magda et al. 
(1986) using molecular dynamic simulations, have found that the transition occurs 
around nL3 = 70 (this corresponds to # = 0.14 for our large rods). These two 
predicted values bracket the transition point indicated by our data. Recently, 
Bitsanis, Davis & Tirrell(l988) have used Brownian dynamic simulation6 to examine 
solutions of rod-like macromolecules of aspect ratio 50. In  that study, which includes 
the effect of the solvent on the molecules, no transition was observed up to nL3 = 50. 

At the high volume fractions, the best-fit line in figure 4 has a slope of 3.01 and a 
correlation coefficient greater than 0.99. The viscosity of solutions of rod-like 
macromolecules in the semiconcentrated region has also been found to be 
proportional to the cube of the concentration in both experiment (Hermans 1962) 
and theory (Doi 1975; Doi & Edwards 1978b; Bird et al. 1987). 

The good agreement between the theoretical and experimental studies of 
macromolecules and our experimental results is in many respects surprising. The 
rods in our experiments have a finite aspect ratio of 19.83 ; in addition, they are not 
affected significantly by forces active at a molecular scale. Furthermore, hydro- 
dynamic interactions between rods, ignored in the macromolecular simulations, 

(8) 
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FIGURE 6. Comparison between the relative viscosity measured in these experiments (0) and the 
results obtained in shear flow (+) for a, = 25 (Ganani & Powell 1986). The lines are the least- 
squares fits at the low (. . . . . . .) and high volume fractions (-), (4) and (5) respectively. The dashed 
line ( -  - - -) connects these two best-fit lines. 
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are important in our experiments because of the high viscosity of the suspending 
fluid. Recognizing these limitations, it  appears that the data from our experiments 
can provide insight into the physics of the interactions of macromolecules and vice 
versa. In the non-dilute regime, our experiments, which are dominated by 
hydrodynamic forces, and studies of macromolecules find a cubic dependence of the 
viscosity on concentration. This suggests that behaviour in macromolecular systems 
in which molecular forces dominate can result from hydrodynamic effects similar to 
those present in our experiments. On the other hand, the transition from the dilute 
to the semiconcentrated regime predicted by macromolecular simulations agrees 
with our experimental observations. This suggests that steric effects, present in both, 
may determine the transition and the cubic concentration dependence. 

Our experimental results emphasize the importance of the rod orientation 
distribution on the macroscopic rheology. The values of y, obtained by Ganani & 
Powell (1986) in shear flow for rods having a, = 25 are considerably lower than those 
for a randomly oriented suspension as shown in figure 6. Bibbo et al. (1985) have 
measured the ‘initial viscosity’ of a suspension of randomly oriented rods in a shear- 
inception experiment. They extrapolate the time-dependent shear stress to measure 
y,~,hearinception~. Generally, their results lie below those of this study and above 
those obtained under steady-state shearing (e.g. a t  q5 = 0.05, yCr(shearinception) = 2.1, 
a, = 23 whereas we find y, = 2.37). 

5. Conclusions 
The following conclusions may be drawn from this study. First, falling-ball 

rheometry can be used to measure the viscosity of suspensions of randomly oriented 
rods. Second, the walls of the columns begin to affect the measured viscosity of the 
suspension when the ratio of column diameter to fibre length has a value between 3.2 
and 1.6, which is in agreement with experiments performed in shear flow. Third, the 
viscosities of the suspensions vary linearly with volume fraction below a volume 
fraction of about 0.125. This is much higher than previously thought and 
considerably higher than is found with suspensions of spherical particles. Fourth, the 
intrinsic viscosity measured by falling-ball rheometry is in good agreement with the 
theoretical predictions of Brenner (1974). Finally, our data can be represented best 
by the two separate equations in the two different concentration regions covered by 
this study : the expected linear dependence in the dilute region and ysp cc q53 a t  higher 
concentrations. 
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